IsaScript Documentation

(The following graphics are screen shots and SDK quotations from Microsoft® ISA Server 2006 and TMG which are
the property of Microsoft Corp. and are included here for instructive use. Some images illustrate IsaScript, which is
the property of Collective Software.)

Table of Contents

IsaScript DOcUMENtatioN. . .ouuuuiiiiee it 1
ISA/ITMG Web Filtering APl ...t eeeeee e, 4
7o) [V (o) o T P T T T 4
oY LU (= T T T 4
ReQUIrEMENES. .. ittt eiieaannns 4

[()| O ANYZ= 11 F=1 o 1Y I T 5
Installation Of 1SASCIIPL.....couvueeiiiiieeiiiiieeieeeee et eeea i 6
INStAIl ProCEAUIe. ..uuuiiieeiiiieiiieeieeeeeee ettt ettt eeen 6
o]0 o] (=T a o) (10 To T T T T 6
Install rolls back (with red error message attheend)............ccooeeeeveeeeeeeeeeiienenann.... 6
Frozen or hung inStall........ooveeniiieiiiiieiiiieeiee et eeeieeeenns 6

A simple test to prove IsaScript iS WOrKing......ooeeeiieeeiiieeiiieeiiiiiiiiiiiiiieeiieeiieeieeieeeennns 8
Main SCriPt SELUD . .uuuiiiee ittt ea i 8
ACCESS FUIE SEIUD...iieeiiiieiiieiieeeeeeeeee et eaennns 11
Testing the Hello World SCript.......oiveeiiieeiiieeeiiieeiiieeeeeeeiee e 12
WAL= o Ri1L (=Y uTaTe Moo) alo1=) o) & T 13
Some Good Starting points in the SDK.....u.iiiieeeiiiiieeeeieeeeeeeeeeeeeeeeeeeeeee, 13
Avoid confusion 0N theSe PAQES....uuiieeeiiieiiiiiiieeieeeeeeeeeeeeeeeeeeeee i 13
Global, Listener, and Per-rule SCriptS..........eiiiiieeuiiiiieiiiiiiiieeieeeeeeeeeieeeeeeeeeeeeeeeen, 14
Global script area (in the main filter settingstab).........cccooooevveeieiiiiiieiiiieie 14
Listener SCript @reas........ouueeeiieeiiieeeiieeeieeee e eeeeeeeannen 14
Per-rule SCript @r@as.......ouiveeiieeiiiieiiieeeiieeeeeeeeeeee e 15
Filter priority ClaSS.......uiiee ittt ettt ettt eeeeeannes 16
Yol | Ol R (= (=Y A (&= T T 17
U P = T o [o U= To [YT TN 17
Require (include) path for scripts or librarieS.........coeeeveeiiiieeiiiiiiieiiiiiiiieeiieieeennn 17
Initialize FUNCON......uiiieiiieiiee et eeeeeeeeeenne 17
Event FUNCHONS. ...ttt eeieeeeeenns 18
ONACCESSDENIEA. ettt rieeeeeen, 18

(O] Y AN U 1 (a1 07e] 1 1] 0] (=] (=T 18
OnAUthentiCatioN.......uuuiiiiieeeiiiieeeee e 19

(O] 2] =100 [0\ [=) 65T F T (o) o T T 20

(O] 0] =010 (@) R{=To [V 1=1S) T T TP TP 21

OnPolicyCheckCompleted.ottt ettt et et et st etaseaaeseaseenaes 22

ONPreproCHEadErS. ... it 23
OnReceiveRespoONSEHEAdErS. ..oouuuiieeiiieeiiieiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeii 23
(O] a1 {01V | (1T T T T T T TP 24
ONSENARESPDONSE . euuiiieeiiieieiii ittt ettt ettt eeeeiees 24
(OF= 111 oF=To @l w0 [a 103 (o) 8 =T T T T TP 25
P [0 m [57=To [S 25
[T (Y= (0 (=) S T T T T 25
SetADAuthenticatedUSer .. iieeiiieeiiiiiieeiieieeeeeeeeeeeeeeeeeee i 26
SetAuthenticatedUSer........iiieeeeiiiiiieeiiiieeeeeeeeee e 26
ST (Y= 10 (=] T T 27
SetUserCachingKeY....ouuuuu et eeeeeeeees 28
ULility FUNCHONS. ettt ettt eeeeeeeeeeeenneen 28
ISA.DisableNotifiCatioNS.......ocveueniiiieeeeeiiiieeiiieiee e 28
ISA.DisableTextMatCh........coouuiiieiiiiiiiieiiiieiieeeieeeeeeeeeeeeeeeeeeeeeeeee, 28
ISA.DisableWPXNOtfiCatioNS.......iiiieeeiiiiieeeiiiieieiieeeeeeieeeee e 29
ST A €T=] {m (=T (=) T 29
ISA.GetServerVariable.........oooveeeiiiiieeeiiiiieeeeeeeeeeeeeeee e 29
(011 AN [0 | R{=TT oYo) a11=) =T Yo A/ T 30

|01 (] Ao [0 | RY=TY oYo) a Y=Y m (=¥ L0 (=) £ T T 30
Uti[.BASE64DECOA. ..ciuuniiieeiiieiiieieeeeeeeeeeeee e 31
Util.BaseB4ENCOAE. ..uuuuiieeiiieeiieeeieeeeeeee e eieaannns 31
Util.GetFBACOOKIENAME. ...iieeiiieeiiieiiieeeeeeieee e, 31
(011K 1Y (€] (o] o= | T T T T TR 31
Util.GetL DAPALttributeValues........ooveeiiieeiiieiiiiieiieeeiieeeeieeeeeeeeeeeeeeeeeeeeeeen, 32
UtILLOQEVENE . oot 33
Util.LogINformation........eueeeiiieiiiieiiiieeiieeiiieeieeeee e, 33
(@111 oo A= o 11 o T 34

[0)| T} (O 1Y o T T T 34

[0 (] =0 [T (=T ! O T 34
Util.SENARESDONSE ...ttt ieeiis 35
UtIL.SErveFlE. e 36
Ut SetGIODAl. .cooeeeiiiiieeeeiieeeeeeeeeeeeeeee i, 36
Util.SetLDAPALttribUuteValuesS.......covuuuiiiiieiiiiieeeiiiieeeieeeeeeeeeeeeeeeeeee e 36

(01 (|] R D= Tolo o [T T T 37
(01| R =y Voo Yo [T T 37
(O70] 01 (=) 1 81\Y/ =1 (o] a1 Yo TR T 38
SetupContentMatChing........iiieeeeiiiiieeeiiieeeeieeeeeee et 38
SetupTeXtMAtCN . ouu.iiie it eienns 38
Text matching callback funCtioN...........uueiiiieeeiiiiiiieiiieieeeeeeeeeeieee e, 40
DisableTexXtMatCNiieeiiieiiieeiie et eeeeiii 40
Content matching EXample..........oiiieeeeiiiiieeiiiiiieeeiieeeeeeeeeeeeeeeeeeeeeeee e 41
Even more featureS. ... iiieeiiieiiieiiieiiieeeeeee i 43
1L =T Tof=Y 0 T T P T T 44
(DI aal0) B=] o M n aTo Yo [T 45
o]0 o) (=T a0 (10 o PO T T 45
510 o] oTo Tl (o] ol F-¥= IS Tod 41 o) S T 45
Appendix A: Other EXamPIES.....cuuuuiiiiieeiiiiieeeeeeieeee e eeeeeeeeeeeeeeeeeeeeeeeeenn 46

Strip domain part out of forwarded Basic Authorization............cooooeiieiiiiieiieiieiiennn., 46

Global script........

Per-rule script......

Read data posted to

the FBA 100N fOrM . ..ot e e eeeae e eaeaene,

Per-listener script

ISA/TMG Web Filtering API

Microsoft provides a powerful API to interact with web content passing through the
proxy, allowing dramatic expansion and control over ISA/TMG's feature set. But there
are many limitations:

In the ISA/TMG interface, there is no facility to add or modify HTTP headers, just
to block them.

In the ISA/TMG interface, there is no facility to modify request or response
bodies, just a limited ability to block by simple signatures.

Filters must be coded as C/C++ DLLs.

A high level of expertise is needed to avoid memory leaks or crashing the firewall
service!

It is very work-intensive to build a proof of concept filter.

Due to the need for expert development, producing even small filters may be
prohibitively expensive for many organizations.

Solution

IsaScript from Collective Software is a filter for TMG, ISA 2006 and 2004 that wraps the
web filtering API and exposes it via the popular and easy to learn Lua scripting
language. Create filters the fast and easy way.

Features

Majority of the web filter API is exposed to Lua script.
Improved content matching abilities not available in the native ISA/TMG API.

No knowledge of C/C++ needed.

Lua errors are handled and reported gracefully; no need to worry about memory
leaks or firewall crashing.

Useful for rapid filter prototyping, or even on production systems. Lua scripting
incurs only a minimal performance overhead.

Veteran ISA/TMG filter developers will find IsaScript intuitive to use, because it
mirrors the C/C++ APl in many ways.

Build your own filters, or take advantage of our expert consultants to help create
the perfect solution.

IsaScript filter development work is far less expensive than building a native
C/C++ filter.

Requirements

TMG or ISA Server 2004/2006

Microsoft .NET Framework version 2 should be installed on each ISA/TMG
server.

http://www.lua.org/

Help is Available!

We are always happy to help you get our software set up and working. If you have
questions or need assistance understanding/configuring/testing a Collective product,
you can get in touch with our support staff quickly and easily. For the most up-to-date
information, please see our Support page at http://www.collectivesoftware.com/Support/

http://www.collectivesoftware.com/Support

Installation of IsaScript

Install Procedure

1. Close the ISA/TMG management console if it's open.

2. Execute the IsaScript msi file. This will stop your firewall service, install the filter
and interface software, register the filter, and then re-start the firewall service.

3. If you are installing over a remote desktop session, keep in mind that when the
firewall service stops and restarts your RDP connection may be frozen, dropped
or timed out. If an error occurs during the installation and the firewall service
cannot be restarted, you will need to access the console to troubleshoot further
(see below).

4. You must run the installer on each ISA/TMG server in an array separately, so
they will all have the filter files installed and registered.

5. If the installation completes with no errors, then you can proceed to the
configuration section.

Troubleshooting

The installation normally completes without errors. However there are a few possible
failure modes that can occur for this complex install process.

Install rolls back (with red error message at the end)

If you are presented with an error message on the final screen, then check out the
application event log, which often will contain details on why the installation failed. The
problem may be immediately solvable from this information, or you may need to work
with Collective support for additional troubleshooting assistance.

Frozen or hung install

The installer tries to start the firewall service after it is done registering the filter
components. In rare cases, everything may register properly but there could still be a
problem preventing the firewall service from starting. In this situation, the installation
may appear to hang on the “Starting services...” item. This is because it is trying
repeatedly to start the service, and failing. In fact if you look at the application event
log, you will see several errors from the firewall service as it tries to start. These
messages may help identify the cause of the problem.

The install should eventually give up on starting the service, but it may take a long time.
If necessary, you can expedite the rollback by going into the services control panel and
setting the Microsoft Firewall service to Disabled temporarily (and applying that
change). This will cause the installer to quickly give up, and it should then correctly roll
back the installation while leaving the firewall service down. After this happens you can
then re-enable and restart the firewall service.

This kind of problem should not normally occur, and will probably require additional
troubleshooting by Collective support. However if you are able to fix the problem you

can re-run the install safely after completing this procedure.

A simple test to prove IsaScript is working

Before learning about everything IsaScript can do, it is useful (and instructive) to start
with a simple “Hello world” example filter.

We will make a script that tells ISA/TMG to return the message “Hello World!” when a
request is made to a specific URL.

It's OK if you don't understand the details of how the script works yet.

Main script setup

The main settings for IsaScript can be found in the Web Filter properties. In the Add-ins
section, choose the Web Filters tab. Note that in TMG this tab is under the System
item.

[Microsoft Internet Security and Acce
=g 15A20065E_wG

----- % Monitoring

----- \j Firewall Policy

----- b Mirkual Privake Metwiorks (WP
-3 Configuration

i) Click here to learn about the C

bl Nebworks — E—
*'b Cache /.ﬁ.ppllcatlun Filkers YWEh Filters \
----- Sl o -ins Order = | Mame

4 Tl T -]

right-click IsaScript and go to properties:

/.ﬁ.pplicatinn Filters Y'ﬂeh Filters \

Order = |Name |[
‘@1 Diffsery Filter El

3z Wb Publishing Load Balanc... Ei

33 Compression Filker Ei

i34 Authentication Delegation F... Bl

Properties
S) Forms-Bas

Mevoa Dimaaan

Choose the settings tab:

IsaScripk Properties

Select the “Edit Script” button to open the editor window:

= Lua Script Editor

Add the following lines:

function OnPolicyCheckCompleted()
end

Note that the body of the function is empty.. We don't want to perform any action
globally for all requests. But this declaration is necessary to tell IsaScript that we intend
to use the “OnPolicyCheckCompleted” hook later on. (More about the need for global

declarations.)
Save and apply these changes.

Access rule setup

Now let's create a policy rule that will use our custom filter. Create an access rule that

matches a URL set, containing “www.collectivesoftware.com/Test”.

Mew Access Rule Wizard

Welcome to the New Access Rule

Microsoft Wizard
Internet Security &

Acceleration Server 2006

Thiz wizard helps vou create a new access rule. Access
rules defing the action that iz taken, and the protocols that
may be uzed, when spemfled cllents from one network,

atternpt to acces:
anu:uthper RIS New Access Rule Wizard
Rule Action

o Select how ol "
-- if the condition!
Access wle nam Protocols
. Select the protocols thi
T — p

Test

Thiz rule applies ta:

Frotosels
LiHTTP
LEHTTPS

Access Rule Sources
Thiz rule will apply to traffic arginating fram the

Thiz rule applies to traffic from these sources:

== | nternal

Mew URL Set Rule Elemenk
[i Mame: I collectiveTest
i]

i If the DMS is not configured carrectly, rules usin
\J') nok be applied as expected,

URLs included in this set {applicable For HTTP traffic oo

Example: http: /imicrosaft. comfsomepathy™ New Access Rule Wizard

Acceszs Rule Destinations

| Thiz rule will apply to traffic sent from the rule source
it thiz page.

Thiz rule applies to traffic zent to these destinations:

| !ﬂ collectivesTest

http://www.collectivesoftware.com/Test

Save the new rule. Make sure the new rule is higher than your existing proxy rules, if
any. (Otherwise the more general proxy rule will run and our new one will never be
matched.)

Firewall Policy

Order = Mame Ackion

= ,_-'-I Z Aoy Q Al

7] Last Default rule &) Deny

Go into the Test rule's properties, selecting the IsaScript tab:

eneral I Actian I Praotocols I Fram | To |
Uzers I Schedule I Cortent Types lza5 cript

Mate that a per-rule zcrpt will not be loaded until the
"Falicy check completed” notification, becauze before
that, it iz not known which wle will be chosen.

Click Edit Script, and enter the following lines:

function OnPolicyCheckCompleted()
Util.PrintClient ("Hello World!")
return SF_STATUS REQ NEXT NOTIFICATION
end

This means “as soon as ISA/TMG decides that this rule has matched, print this string to
the browser”. After printing a string to the client, the request ends automatically,
because this output replaces whatever content would normally be returned by the web
server.

Save and apply these changes.

Testing the Hello World script

From the Internal network, open a browser and enter the URL
“http://www.collectivesoftware.com/Test”. Instead of showing the contents of that page,
you should see a single printed line “Hello World!”.

If this is not what you see, check the Monitoring Alerts tab to see if any script errors
were recorded. If you get stuck, help is available.

http://www.collectivesoftware.com/Test

Web filtering concepts

This document assumes some level of familiarity with the Microsoft ISA 2004/2006
SDK. If you are not comfortable with development concepts, you can request one of
our consultants to help you write your script.

Some Good Starting points in the SDK

Web proxy documentation: Starting page for web filter API.

Introduction to Web Filters: Contains a good flowchart showing the organization
of notifications in the proxy. When looking through events, it helps to understand
what happens when.

Event Notifications: Information about what each notification does. Note that the
“...RAW_DATA” notifications are not exposed to the Lua script directly; their
functionality is wrapped by IsaScript's text matching features instead (which are a
lot more useful)

Avoid confusion on these pages

There are some concepts and pages in the SDK that don't apply to IsaScript, and can
be confusing for IsaScript users.

Web filter entry point functions, and Entry point functions pages: This
functionality is all done automatically by IsaScript, and so you don't need to deal
with or understand it.

Web filter basics: This page talks about installing the filter, which you don't need
to worry about in IsaScript.

Signaling Events and Alerts: IsaScript provides a much simpler interface to log_
events/alerts, so you can ignore this page.

Best practices for web filters: Most of this stuff is handled internally by IsaScript.

Callback functions: Some of these are useful in IsaScript, others handled

automatically or not needed. The ones you can use yourself are discussed in the
Script reference below.

http://msdn.microsoft.com/en-us/library/ms812592.aspx
http://msdn.microsoft.com/en-us/library/ms812584.aspx
http://msdn.microsoft.com/en-us/library/aa503397.aspx
http://msdn.microsoft.com/en-us/library/aa503424.aspx
http://msdn.microsoft.com/en-us/library/ms812622.aspx
http://msdn.microsoft.com/en-us/library/aa503426.aspx
http://msdn.microsoft.com/en-us/library/ms812625.aspx
http://msdn.microsoft.com/en-us/library/ms828061.aspx
http://msdn.microsoft.com/en-us/library/aa503432.aspx
http://msdn.microsoft.com/en-us/library/ms828058.aspx
http://msdn.microsoft.com/en-us/library/ms828058.aspx

Global, Listener, and Per-rule scripts

If you look back at the “Hello World” example, you can see that there were two areas
where we entered script:

e In the filter's main settings tab
e In the “IsaScript” tab of the access rule

It is important to understand what the differences and limitations are for different script
sections.

Global script area (in the main filter settings tab)

e Event functions defined here will run for every web request that goes through the
proxy, regardless of which rule matches. This may or may not be what you want,
depending on the filter you are making.

e If you want to set up an event function to run in a per-rule script, you must define
an empty version of it in the Global area, the same way as we did for
OnPolicyCheckCompleted in the “Hello World” example. The reason for this is
that IsaScript needs to know right away which events may get used in your filter.
At the beginning of a request it's not known yet what rule will be matched, so you
have to give it a hint about the events by doing empty defines for all the ones you
plan to use.

e If you wish to do any content matching, you must define the
SetupContentMatching function in the global area.

e You can set variables, make functions, and use the “require” statement in the
global area. Everything you set up here will also be visible to the per-rule scripts
you write, if any.

e The global script gets pre-compiled for speed and efficiency. The more of your
functionality you can define in this area, the faster your filter will run.

Listener script areas

e In each Web Listener properties page, there is an IsaScript tab. To see this tab,
make sure to open the properties from the "Toolbox" view:

Toolbox "‘{Tasks \(Help \
Protocols
Users
Content Types |
Schedules
Metwork Objeckts %)

Hew = Editie. Export Selected

 Import to Selected. ..
- L Mebwo Eepart gl

[Mebwao

Irmport Al
’ [Compr
i’ [Addres MNew Web Listenet. .,
(3 Subrel Properties
3 Campu
1 URL S¢
[Domair <9PY
= [web Li
Help
e L
I Server Farms

Otherwise any third-party software tabs will appear missing (this is a design flaw
in the ISA/TMG console).

e You can use these per-listener areas instead of, or to override contents from the
global script area. Because ISA/TMG knows immediately which listener is used
for a request, none of the limitations of per-rule script areas (below) apply here.

e Listener scripts are only run on sessions that flow through that listener.

Per-rule script areas

e Event functions defined here will only work if you have already defined an empty
version of them in the Global area or Listener area, as noted above.

e Some web proxy event functions and content matching processing occur before
the firewall policy rule is chosen, so you cannot use them in the per-rule area.
These items are:

e SIDE_CLIENT / MODE_REQUEST / PART_HEADER: Request headers
from the browser are processed. If you need to do a per-rule match on
headers, you can use the SIDE_SERVER value instead. That way you'll
invoke the matching “after” ISA/TMG has completed its rule processing.

e SIDE_CLIENT / MODE_REQUEST / PART_BODY: Some (or all) of the
request body may be processed, depending on how the packets are
received and processed by ISA/TMG. Again, you can define your matcher
to use the SIDE_SERVER value, and it will only run after ISA/TMG has
finished rule processing.

e |Initialize Function: If you need to reset variables for each request, do this
in global or listener scope.

e OnPreprocHeaders: If you need to change headers before ISA/TMG does
its rule processing, then you have to do it in the global area. To read the
value of a header you can use the GetHeader callback function.

e OnAuthentication
e OnAuthComplete

You cannot use these events/matchers in a per-rule script, because until the
request headers and authentication are finished, ISA/TMG has not yet decided
on which rule to use!

e Apart from the above, you can use other events or matchers in the per-rule script
area.

e Another approach is to set the value of a variable here, and have all the filter
events and matchers defined in the global script. The global functions can
change their behavior based on the value of this variable, thus yielding a “per-
rule” effect while keeping the code base in one location. This has some
advantages, because:

e Script in per-rule areas gets re-compiled during each request, in contrast to the
fast pre-compiled global script. Thus as you add more code lines into per-rule
scripts, it will add some CPU overhead to your proxy.

Filter priority class

The order in which web filters are called is important. To attain the behavior you want,
sometimes it is necessary to position your filter higher or lower than other filters. For
example, if your filter is trying to match text but getting only compressed content, move
it below the Compression filter. If you wish to process all requests but find you are
missing certain ones, you may need to move the filter to a higher priority than some
other one that is blocking requests (such as a URL filter or anti-virus).

All web filters are divided into three priority classes: High, Medium, and Low. The class
assigned to each filter is normally determined at design time by the developer, by
analyzing where the filter should fit broadly into the list. Since IsaScript's behavior is not
pre-defined, we can't know ahead of time what priority class you may need to use.
Therefore, the main settings tab has a drop-down selection that allows you to set the
class to any of the three values.

After setting the priority class, you can then use the up/down arrows in the web filters
pane to position IsaScript within the other filters of its new class.

Script Reference

Lua Language

IsaScript uses Lua as its scripting language, because it is free, powerful, efficient, and
easy to bind with C/C++ (which is the language the IsaScript filter uses internally). This
document won't provide instruction on Lua, but several tutorials, references, and books
are available online for free. The appendices of this document contain some examples
that may also be instructive.

Require (include) path for scripts or libraries

The lua require statement is used to include compiled lua DLL libraries and other lua
files. Any files you wish to include should be placed within the folder:

[ISA/TMG path]\Collective Software\IsaScript\lua
Some libraries are invoked with a dot-notation such as:

require 'luasgl.odbc'
and in this case the file odbc.dll should be placed in the sub-folder:

IsaScript\lualluasqgl
In basic operation, no additional libraries are required for IsaScript. However, lua library
DLLs may be added to provide additional features such as database connectivity. Keep
in mind that web filter operations should be short and synchronous, so as not to cause a
slow-down in the proxy.

“require” statements should always be located in the global script.

Initialize Function

If you have a Lua function called Initialize() in your global or listener scope, it will get
called (at least) once before each HTTP request. This is useful because the scripts will
normally remember global variables for the duration of the web browser's connection to
ISA.

If you want to reset global variables to a known value freshly for each request, use this
function. It is not guaranteed that there will be exactly one request per call to this
function; but it will always be called at least once before a fresh request cycle begins in
the session.

Example

-- a string in global scope, available to all functions
-- for the duration of this "net session":
Clty - nn

function Initialize()
-- reset this to blank each time we get a new request
-— so stale values don't confuse us!
Clty = nn

end

http://www.lua.org/pil/8.1.html
http://www.lua.org/pil/
http://www.lua.org/manual/5.1/
http://lua-users.org/wiki/LuaTutorial
http://www.lua.org/

Event Functions

In general, when you implement an event function it should return
SF_STATUS_REQ_NEXT_NOTIFICATION unless you have a compelling reason to
return a different value.

SF_STATUS_REQ_ERROR can be used to signal an error condition and stop the
request processing. In general it is more elegant to write a response to the client
instead using the WriteClient function, and then return SF_STATUS REQ_FINISHED

OnAccessDenied

SDK Summary

“Sent just after ISA Server determines that access is denied for the requested
resource, but before ISA Server sends a response to the client.”

Arguments

e pszURL: A string that specifies the URL that requested access to the
resource.

e pszPhysicalPath: A string that specifies the physical path of the resource
that was requested.

e dwReason: A numeric value containing flags that indicate the reasons for
the denial. More information.

Notes

This event is not called by ISA/TMG for 502 responses, such as the common
“The ISA Server denied the specified Uniform Resource Locator”. To catch these
and other filter responses, use the OnSendResponse event instead.

Example

function OnAccessDenied(args)
Util.LogInformation ("Denied access to URL: " .. args.pszURL)
return SF_STATUS REQ NEXT NOTIFICATION

end

OnAuthComplete

SDK Summary

"Sent just after ISA Server determines that access is allowed to the requested
resource in an HTTP authentication scenario."

Arguments

o GetHeader: the GetHeader callback function.

http://msdn.microsoft.com/en-us/library/ms826753.aspx

e SetHeader: the SetHeader callback function.
e AddHeader: the AddHeader callback function

o fResetAuth: If set to true, the authentication process will be reset, and no
impersonation will be done.

e SetUserCachingKey: the SetUserCachingKey callback function.

Notes

The real auth complete event contains a callback to get a Win32 impersonation
token, useful in cases where the web filter needs to perform actions on behalf of
the user. This version of IsaScript does not support impersonation.

Important SDK note: "When the request is authenticated, ISA Server removes
every Authorization header before sending the request on to the upstream proxy
server or Web server. (In forward-proxy scenarios, it removes Proxy-
Authorization headers. In reverse-proxy scenarios, it removes Authorization
headers.) Therefore, even if the filter adds an Authorization header after
receiving the SF_NOTIFY_AUTH_COMPLETE notification, it will be removed."

If you want to add a custom Authorization header to the forwarded request, you
can use the Content Matching system (set to SIDE_SERVER,
MODE_REQUEST, PART_HEADER).

Example

function OnAuthComplete (args)
-- cache this content keyed to the user name
-- in addition to the URL
user = ISA.GetServerVariable("AUTH_USER")
url = ISA.GetServerVariable ("URL")
args.SetUserCachingKey (url .. "::" .. user)
return SF_STATUS_REQ_NEXT_NOTIFICATION

end

OnAuthentication

SDK Summary

"Sent just before ISA Server attempts to authenticate the client. Can be used to
provide a custom authentication scheme. If authentication is not required by any
rule, the notification is sent with an anonymous user."

Arguments

e pszUser: string that specifies the user name for this request. An empty
string indicates an anonymous user.

e pszPassword: string that specifies the password for this request.

e fAuthlsRequired: true/false, Indicates whether authentication is required
for this request.

http://msdn.microsoft.com/en-us/library/ms828070.aspx

o SetAuthenticatedUser: the SetAuthenticatedUser callback function.
e SetADAuthenticatedUser: the SetADAuthenticatedUser callback function.

Notes

If Basic credentials are passed in, the pszUser and pszPassword arguments will
be filled. You can use one of the callback functions to set the user that ISA/TMG
will use for this request.

The ISA/TMG form authentication filter does not use this event at all. To extract
credentials from form authenticating clients you'd have to parse the body of the
POST request before the form authentication filter handles it, using text
matching. Collective's FlexForm filter uses this approach.

For windows integrated authentication, the password is never sent, so you
cannot read it out of the pszPassword value.

If you just want to read information about what user has authenticated, it is most
reliable to wait until the OnPolicyCheckCompleted event and use
GetServerVariable to poll the AUTH_USER and other values. OnAuthComplete
is also an OK choice, but be aware that for NTLM authentication, it is only called
for the first request in a session. So if your filter needs to read out the user
during each request, keep that in mind.

You cannot alter the user by changing pszUser and pszPassword directly. If you
want to set these values, use the SetADAuthenticatedUser callback, or change
the Proxy-Authorization header before this event fires.

OnEndOfNetSession

SDK Summary

"Sent when a network session with a client is ending."

Arguments

(none)

Notes

An ISA/TMG "session" normally refers to a single connection from the browser.
This session can span several request/response cycles, including requests to
different HTTP servers. Don't assume that all requests within a session will be to
the same server, or that a session will last for all connections from a browser to a
server.

OnEndOfRequest

SDK Summary
"Sent when the end of a request is detected."

Arguments

(none)

Notes

The term "request" here can be confusing. This notification is sent at the end of
every request/response cycle, after all data has been received from the server.
Note that OnLog is called after this event.

SDK Summary

"Sent after the end of a request is detected, just before ISA Server writes the
session to the ISA Server log."

Arguments
e pszClientHostName: The client's host name or IP address.

e pszClientUserName: the client's user name if authenticated, or
"anonymous" otherwise.

e pszServerName: the name of the server to which the client is connected.
e pszOperation: the HTTP method.
e pszTarget: the target of the HTTP command.

e pszParameters: the information that is to written in the Filter Information
field of a Web proxy log entry.

e dwHttpStatus: The HTTP return status.
e dwWin32Status: The Windows error code.
e dwBytesSent: The number of bytes sent from the server to the client.

e dwBytesRecvd: The number of bytes received by the server from the
client.

e msTimeForProcessing: The time, in milliseconds, required to process the
client request.

Notes
This event is used to read (and rewrite) data that will go into the proxy log. Not

all columns in the log can be changed. This does not affect the firewall log; there
is currently no way to programmatically change the firewall log entries.

If you set the pszParameters entry, you should append the old value to the end,
so that other filters' values can be preserved too.

In our testing, the dwBytesSent value does not seem to update when re-set; the
log window always reflects the value originally passed in.

Example

function OnLog (args)
—-— prepend something to the "Filter Information" column
args.pszParameters = "Filtered! ;" .. args.pszParameters
return SF_STATUS REQ NEXT NOTIFICATION

end

OnPolicyCheckCompleted

SDK Summary

"Sent after the ISA Server policy check has been completed, and the request has
either been allowed or denied. After this notification has been received, the Web
filter can request the GUID of the policy rule that either allowed or denied the
request.”

Arguments
(none)

Notes

This event is the first one (on the flow chart) that can be used in a per-rule script.
Also, many of the GetServerVariable values aren't populated prior to this point.
When this event is reached, your per-rule script (if any) has been loaded. If you
have events or variables defined there, they will be available.

Example
-— This example would be placed in a per-rule script

function OnPolicyCheckCompleted()

-- assume this variable was set to a default
-- value of false in a previous event,
—-— such as OnStartOfRequest

processThisRequest = true

-- now on some future event callback in this request,
-- we can read that and act accordingly

return SF_STATUS REQ NEXT NOTIFICATION
end

OnPreprocHeaders

SDK Summary

"Sent when the ISA Server Web proxy finishes preprocessing the headers in a
request. May be used by filters to modify the headers before the Web proxy
begins to process the information in them."

Arguments
e GetHeader: the GetHeader callback function.
e SetHeader: the SetHeader callback function
e AddHeader: the AddHeader callback function
e SetUserCachingKey: the SetUserCachingKey callback function

Notes

This is a popular event because it can be used to read and change request
headers on their way in to ISA. But keep in mind that this occurs in the flow chart
before authentication and before rule processing, so you must put your code in
the global section.

Example

myAuthorization = ""

function OnPreprocHeaders (args)
-- save the auth header, since ISA/TMG deletes it later
-- some future event in the request could read the var
myAuthorization = args.GetHeader ("Proxy-Authorization:")
return SF_STATUS REQ NEXT NOTIFICATION

end

OnReceiveResponseHeaders

SDK Summary

"Sent after the response headers have been received. May be used by Web
filters to modify the headers received from the Web server before the response is
processed by ISA Server."

Arguments
e GetHeader: the GetHeader callback function.
e SetHeader: the SetHeader callback function
e AddHeader: the AddHeader callback function
e SetUserCachingKey: the SetUserCachingKey callback function

Notes

Similar to OnPreprocHeaders but on the response side. Headers dealt with here
are from the HTTP response.

SDK Summary

"Sent before the Web filter forwards a request to the destination server. Can be
used by a filter to override the host name, IP address, or port for the connection.

Arguments
e pszHost: string that specifies the host name or IP address.
e wPort: The port number for the host. (A numeric value, not a string)

Notes

If you want to make the request go to a different server than it was destined for,
you can change the host and port here. This is also the first event where you can
learn where ISA/TMG plans to send the request.

You can use the GetServerVariable function to read the ROUTING variable, and
detect whether the request is being web-chained upstream or sent directly out.
However (annoyingly) there's no way to set which behavior is being used. In
other words, if the request is being chained there's no way to force it to be direct,
and vice versa. This is an important distinction because for chained requests the
protocol and security used are different than to a direct web server.

OnSendResponse

SDK Summary

"Sent after the request is processed, but before any headers are sent back to the
client. This notification is not used when ISA Server returns a response from the
Web server or from the cache. However, it is called when a filter generates a
response by using SF_ REQ_SEND_ RESPONSE_HEADER (), or when the Web
proxy generates a response, such as an error page."

Arguments
e GetHeader: the GetHeader callback function
e SetHeader: the SetHeader callback function
e AddHeader: the AddHeader callback function
e HttpStatus: The current HTTP status code.

Notes

Defining this event is the easiest way to detect 502 responses generated by the
proxy. They do not trigger OnAccessDenied as one might expect.

Callback Functions

These functions can only be used when they are passed to your event function as an
argument. For example:

function OnAuthComplete (args)
args.SetAuthenticatedUser ("someuser", "somespace", "somepassword")
return SF_STATUS REQ NEXT NOTIFICATION

end

Notice how the SetAuthenticatedUser function is a member of the "args" variable that
was passed in. Callback functions are only usable in the specific events for which they
are passed in.

AddHeader

SDK Summary

"Adds an HTTP header to an incoming request after an
SF_NOTIFY_PREPROC_HEADERS or SF_NOTIFY_AUTH_COMPLETE event
notification, to an incoming response after an
SF_NOTIFY_RECEIVE_RESPONSE_HEADERS notification, or to an outgoing
response after an SF_NOTIFY_SEND_RESPONSE notification."

Arguments

e IpszName: a string containing the name of the header to add. Header
names should include the trailing colon (:). This parameter is not case-
sensitive.

e IpszValue: a string containing the new value to add to the header.

GetHeader

SDK Summary

"Retrieves an HTTP header. The function retrieves a header for an incoming
request after an SF_NOTIFY_PREPROC_HEADERS or
SF_NOTIFY_AUTH_COMPLETE notification, for an incoming response after an
SF_NOTIFY_RECEIVE_RESPONSE_HEADERS notification, and for an
outgoing response after an SF_NOTIFY_SEND RESPONSE notification. "

Arguments
e IpszName: a string containing the name of the header to retrieve. Header

names should include the trailing colon (:). This parameter is not case-
sensitive.

The special values "method", "url", "version", and "body" (for requests
only) can be used to retrieve individual portions of the request line. When
the value "body" is specified, the function retrieves the part of the body
that has already been received.

The special value "status" can be used to retrieve the status from the
response line.

Note that the special values do not include a trailing colon.
Notes

Retreiving the request body via this function is unreliable. It's generally easier to
use a text matching callback.

SetADAuthenticatedUser

SDK Summary

"Sets the authenticated Windows user. This enables associating information
about an authenticated user with the current request."

Arguments
e IpszUserName: a string containing the user name.
e IpszPassword: a string containing the user password.

Notes

At this time token management is not supported, so the hToken argument is
absent. Use this function when you want to set the user for this request to an
integrated windows account that is known to the firewall. Don't use this if you're
authenticating with RADIUS or LDAP, only for true Windows integrated logins
where the firewall is a domain member.

SetAuthenticatedUser

SDK Summary

"Sets an authenticated non-Windows user. This allows associating information
about an authenticated user with the current request.”

Arguments
e IpszUserName: a string containing the user name.

e IpszNameSpace: a string containing the namespace of the authentication
scheme for the user.

e IpszUserGroups: a string containing the user groups. The string supplied
in IpszUserGroups can be a comma-separated list of user groups.

Notes

At this time IsaScript does not provide a custom authentication scheme of its
own, but it is possible to use existing schemes and set the user information with
this function. To get the appropriate namespace for this function, you can use
the GetServerVariable utility function to read the AUTH_TYPE variable. This
assumes that authentication has already completed, however. The values it may
have, according to the SDK, are "Basic, Digest, Kerberos, NTLM, and RADIUS".

The groups argument is useful for defining access rules more broadly. If the
name of one of these "groups" is in the user set for the rule then access will be
allowed. These group names are not mapped to Windows groups; (windows
users are not set using this function).

SetHeader

SDK Summary

"Modifies or deletes the value of a header or to add a new header. The function
can also be used to modify the special values included in the request or status
line."

Arguments

e IpszName: a string containing the name of the header to modify or delete.
Header names should include the trailing colon (:). This parameter is not
case-sensitive.

The special values "method", "url", "version", and "body" (for requests
only) can be used to set individual portions of the request line. When the
value "body" is specified, the function sets the part of the body that has
already been received.

The special value "status" can be used to set the status in the response
line.

Note that the special values do not include a trailing colon.

e IpszValue: a string containing the new string for the header, or to "\0" (if
the header is to be deleted).

Notes

The "body" value is unreliable. In general if you want to modify the body you
should use text matching callbacks instead.

SetUserCachingKey

SDK Summary

"Set the user caching key-- the key that the request will be cached with. This key
is used to check if the given request is in the cache, so there is no need to pass
the request to the server. The key is also used to cache the server response after
it arrives. The URL of the request is used as the default cache key."

Arguments
e IpszCacheKey: a string containing the new caching key.

Utility Functions

These functions are provided to all scripts by ISA/TMG itself or IsaScript. They can be
called regardless of which event you are in, but some may not make sense or work
properly in some cases. For example once response data has been sent to the
browser, calling Util.Redirect won't really redirect the user, because it's too late to send
a 302 response.

ISA.DisableNotifications

Summary
For advanced use. See SF_REQ_DISABLE_NOTIFICATIONS documentation.

Notes

Some flags, such as OnEndOfRequest, cannot be disabled because IsaScript
uses them internally to do important clean-up and resetting procedures.

ISA.DisableTextMatch

Summary

This is an advanced function that tells IsaScript to disable content matching that
was previously set up using SetupTextMatch. It is primarily useful to increase
efficiency. See the Content Matching section DisableTextMatch.

http://msdn.microsoft.com/en-us/library/aa503393.aspx

ISA.DisableWPXNotifications

Summary

For advanced use. See SF REQ DISABLE WPX NOTIFICATIONS
documentation.

ISA.GetHeader

Summary

This is very similar to the GetHeader callback function, although it can only be
used to read headers, not the special values.

Arguments
e A header name to retrieve, trailing a colon, as in:

Authorization:

Notes

This is a convenience wrapper of GetServerVariable that reads the ALL_RAW
value and parses out the header you want. It is included because in many cases
one wishes to read a header during some call where the normal GetHeader
callback is not available.

Example

function OnRouting(args)
-—- can't use args.GetHeader because GetHeader is not given
-— for this event!
cookies = ISA.GetHeader ("Cookie:")
-- now have fun decoding the cookies :/

ISA.GetServerVariable

Summary
Wraps the SDK function of the same name, documentation here.

Arguments
e Name of the variable to read

Example

username = GetServerVariable ("AUTH USER")

http://msdn.microsoft.com/en-us/library/ms826741.aspx
http://msdn.microsoft.com/en-us/library/aa503392.aspx

Util.AddResponseBody

Summary

Use with Util.SendResponse to add body bytes to the response that will be
generated.

Arguments
e A string of data that will be added to the body

Notes

You can call this multiple times or from different locations, but once the
Util.SendResponse function has been called, the response will be considered
finished as soon as the currently executing script returns.

Example

-- set a cookie in the response
Util.AddResponseHeaders ("Set-Cookie: MyCookie=1;path=/\r\n")
Util.Redirect ("/some/page.html")

Util.AddResponseHeaders

Summary

Use with Util.Redirect , Util.SendResponse, or Util.ServeFile to add one or more
headers to the response that will be generated.

Arguments
e A string of values in the form:

HeaderName: HeaderValuel\r\nHeader2Name: Header2Value\r\n

Notes

You can call this multiple times or from different locations, but the argument in
each call must be one or more header values, each terminated by the control
characters \r\n. Once the Util.Redirect , Util.SendResponse, or Util.ServeFile
function is called, the response will be considered complete as soon as the
currently executing script returns.

Example

-- set a cookie in the response
Util.AddResponseHeaders ("Set-Cookie: MyCookie=1;path=/\r\n")
Util.Redirect ("/some/page.html")

Util.Base64Decode

Summary

Decodes a base-64 encoded value such as an Authorization header.

Arguments

e Encoded string

Example

-- authorization header looks like name:password when decoded
auth = Util.Base64Decode (ISA.GetHeader ("Proxy-Authorization:"))

Util.Base64Encode

Summary
Encodes a string into a base-64 encoded representation.

Arguments
e Value to encode

Example

encoded = Util.Base64Encode ("myuser:mypass")

Util.GetFBACookieName

Summary

Returns the name of the cookie that is used in FBA logons for this web listener.

Notes

If the cookie name has not been set by the user, this returns the value "cadata
%w+" which is a Lua pattern that can be used to match the unique cookie name

randomly chosen by ISA. These default cookies always begin "cadata" and then

have alphanumeric characters appended after.

Util.GetGlobal

Summary
Gets a value from persistent memory.

Arguments

e Variable name to retrieve

Notes

Since the Lua script state is loaded fresh for each proxy session, it is not possible
to store data during one event function, and have it reliably available for future
requests. You can use GetGlobal and SetGlobal to store values persistently in
ISA's memory.

Values are encrypted in memory, although since the encryption key is also stored
in memory it should not be considered strong protection. In a broader sense, if
someone is snooping the memory on your firewall, you likely already have bigger
problems than this.

This store is lost whenever the firewall service stops. To store values
permanently or share values between ISA/TMG servers, you could use luasql to
interface to a database.

Util.GetLDAPACttributeValues

Summary

If ISA's LDAP settings are configured, you can use this function to get values for
one or more attributes on a user object.

Arguments

e A string in the form "domain\username"”, which specifies the user of
interest.

e A string specifying the user's password. This is used to authenticate to the
LDAP connection. ldeally leaving this blank would tell it to use default
credentials; alas this is not the case currently. You have to specify creds
here.

e Alist (table) of strings, each string specifying the name of an LDAP
attribute on the user object that you are interested in retrieving. Attributes
containing non-string types have not been tested at this time.

Notes

The function returns a table whose indices are the attribute names. Each value
is really another table, containing one or more strings. This is because many
LDAP properties can have a "value" that consists of a list of strings.

On failure, the second return value is an LDAP error code, and the third (if
present) is a string containing additional information about where the error
occurred.

Currently the function assumes the user you want to query is the same one

whose credentials you are passing in to the function. This is only useful if you
have the user's username and password, i.e. if you record them from the Basic
auth or FBA. In the future it may be generalized to be more useful in other
cases.

Example

attribs = {"physicalDeliveryOfficeName", "distinguishedName"}
values, errN, errS =
Util.GetLDAPAttributeValues (username, pass, attribs)
-- did we find the record?
if (values) then
if (not values["physicalDeliveryOfficeName"] or not
values["physicalDeliveryOfficeName"][1]) then
-—- empty gets nil, we'd rather have ""
values|["physicalDeliveryOfficeName"] = {""}

end
if (not values["distinguishedName"]) then
Util.LogWarning ("I could not find an LDAP record for user
" .. username .. " (DN check)")
end
realCity = values["physicalDeliveryOfficeName"] [1]
dn = values["distinguishedName"] [1]

end

Util.LogEvent

Summary

Logs an informational event to the special event log “IsaScript”, which is visible
through the Windows Event Viewer.

Arguments

e A string containing the text you want to record in the event.

Util.Loginformation

Summary

Triggers an ISA/TMG "informational" alert, visible in the alerts tab and (by
default) the Application event log.

Arguments

e A string containing the alert message you want to record

Notes

This triggers the IsaScript-Information alert. By default, this alert suppresses
multiple triggers within the same one-minute interval. If you are using this
function to record critical information, you may wish to adjust this behavior.
Handling of alerts can be configured in the Alerts tab.

Util.LogWarning

Summary

Triggers an ISA/TMG "warning" alert, visible in the alerts tab and (by default) the
Application event log.

Arguments
e A string containing the alert message you want to record

Notes

This triggers the IsaScript-Warning alert. By default, this alert suppresses
multiple triggers within the same one-minute interval. If you are using this
function to record critical information, you may wish to adjust this behavior.
Handling of alerts can be configured in the Alerts tab.

Util.PrintClient

Summary

A debugging function that sends a text message to the browser, skipping the
normal response.

Arguments
e A string containing the message you want to send to the browser

Notes

You can call this several times in the same event function to append more data.
However at the end of the current event, the data will be sent to the browser and
the response will be ended.

This is a somewhat crude "print" function designed for debugging. To send html
to the client you can use ServerFile.

Util.Redirect

Summary

Sends an HTTP 302 response to the browser, instructing it to redirect to a
different URL.

Arguments
e A string containing an fully qualified URL such as:

http://www.collectivesoftware.com/Products
Or, a server-less URL which will be interpreted relative to the current
server:

/Products

Notes

The redirect function can qualify a server-less URL so you don't have to construct
the whole thing if you are just trying to redirect to a different path on the same
web server.

If any response bytes have been sent to the client already, the redirect won't
work.

Util.SendResponse

Summary

Sends (the beginning of) a completely custom filter-generated response to the
browser.

Arguments
e The HTTP response line (without trailing \r\n)

Notes

To add headers and body to the response use the Uti.AddResponseHeaders
and Util.LAddResponseBody functions.

Example

-—- re-prompt when the user "GuestUser" authenticates

-- because that user is a shared logon account

-- IE will automatically use it, but we can prompt IE

-- to try again and allow the user to log in as someone else

user = ISA.GetServerVariable ("AUTH USER")

if user == "GuestUser" then
Util.SendResponse ("HTTP/1.1 407 Proxy Authenticate")
Util.AddResponseHeaders ("Proxy-Authenticate: Negotiatel\r\n")
Util.AddResponseHeaders ("Proxy-Authenticate: Kerberos\r\n")
Util.AddResponseHeaders ("Proxy-Authenticate: NTLM\r\n")
Util.AddResponseHeaders ("Connection: Keep-Alive\r\n")
Util.AddResponseHeaders ("Proxy-Connection: Keep-Alive\r\n")
Util.AddResponseHeaders ("Pragma: no-cachel\r\n")
Util.AddResponseHeaders ("Cache-Control: no-cache\r\n")
Util.AddResponseHeaders ("Content-Type: text/html\r\n")
Util.AddResponseBody ("<html>You need to authenticate</html>")

end

Util.ServeFile

Summary

Reads an html (or supporting type) file from the path:

[ISA/TMG Folder]\Collective Software\IsaScript\HTMLFiles
and sends it to the browser.

Arguments
e Name of the file to send.

Notes

The file must be in the HTMLFiles folder. For security, no other folders are
checked.

For images, javascript, css, html, and txt files, the mime type will get set
automatically. For other file types the mime type is set to "text/plain”.

If you specify a file that's not found, a 404 response will be sent to the browser.

Util.SetGlobal

Summary
Stores a value to persistent memory (see GetGlobal)

Arguments
e Variable name to set
e The value to be stored

Util.SetLDAPAttributeValues

Summary

Like Util.GetLDAPAttributeValues, this function allows you to operate on the
LDAP attributes of a user object. This function replaces the string value(s) of one
or more attributes with one or more string values you specify. That is, for each
attribute you can specify one or more values. (Not all LDAP attributes can store
more than one string value)

Arguments

e A string in the form "domain\username"”, which specifies the user of
interest.

e A string specifying the user's password. This is used to authenticate to the
LDAP connection. Ideally leaving this blank would tell it to use default
credentials; alas this is not the case currently. You have to specify creds
here.

e A string specifying the user's distinguished name. Technically this can
refer to a different user than the one whose credentials you supply, as long
as the credentials are sufficiently powerful to have access to write to this
other user's object.

e Alist (table) of items to set. Each item in the list is a pair (table) whose
first member is a string containing the name of the LDAP attribute to set.
The second member is a list (table) of string values that will be set into that
attribute.

Notes

To get the distinguished name of a user object, you can either fabricate it using
knowledege of how your users are stored in AD (which OU's etc.) or you can do a
GetLDAPValues and ask for the distinguishedName attribute.

Example

setvals = {{"physicalDeliveryOfficeName", {someVariable} }}

errN, errS = Util.SetLDAPAttributeValues (username, pass, dn, setvals);

Util.LURLDecode

Summary

Decodes a string in the URL-encoded format, such as URLs and simple form
post bodies.

Arguments
e A string to decode

UtilLURLENncode

Summary
Encodes a string into its URL-encoded format.

Arguments
e A string to encode

Content Matching

The web proxy's native API functions for accessing the body of HTTP messages are
very rudimentary. Proper handling and processing of body data requires a lot of
sophistication in the filter code. Buffering and content length control are all left up to
filter developers to implement correctly, which places a heavy burden on any filter that
wishes to modify body content.

So, in addition to the *Header functions provided through event functions, IsaScript
exposes HTTP message (header and body) contents through a system of content
matching callbacks. In this system, you specify a part of the HTTP conversation you
are interested in, and provide a matching expression and the name of a callback
function. IsaScript examines the HTTP data stream using your expression, and calls
your function when a match occurs. The function is free to modify the data, and any
change will be correctly merged back into the HTTP stream. This enables powerful
content control, while internally abstracting away all the difficult details.

SetupContentMatching

Summary

In order to match an expression and be notified, your filter must define a function
called SetupContentMatching in the global script area. Inside this function, you
will tell the filter about what you intend to match, and what function should be
called for each match. SetupContentMatching is called at the beginning of each
proxy session.

Arguments
e SetupTextMatch: The SetupTextMatch callback function.

SetupTextMatch

Summary

This is a function passed in during SetupContentMatching. You call it with
various arguments to set up matches and actions the filter will take during the
session. This callback is only available to be used within the scope of the
SetupContentMatching function. You can call this several times with different
arguments in order to set up many matchers during the same session.

Arguments

e Side: Either SIDE_CLIENT or SIDE_SERVER. The ISA/TMG API allows
filters to intercept data at either "side" of the proxy.

Data coming from the browser is considered to be on the client side first,

Notes

then the server side after it passes through ISA. Data coming from the
server is considered to be on the server side first, then the client side after
it passes through ISA.

Mode: Either MODE_REQUEST or MODE_RESPONSE. If your filter is to
match traffic from browser to server, choose MODE_REQUEST. If you
want to match data returned from the server to the client, use
MODE_RESPONSE.

Part: Either PART_HEADER or PART_BODY. If you want to match
header strings use PART_HEADER, otherwise select PART_BODY to
match body bytes.

Pattern: This is a string containing a perl-compatible regular expression
that will be used on your selected portion of the HTTP stream. Whenever
this expression matches part of the stream, the matching portion will be
sent to your callback function.

Callback: This is a string containing the name of a function you will define
that gets called upon each match.

Can modify?: Either frue or false. This value should be set to frue if your
PART_BODY callback intends to change the length of the data in the
HTTP stream.

Side: Your filter exists within an ecosystem of other filters and hooks. There's no
simple rule that can tell you which side to choose; it depends on whether you
want to filter data that has already been processed by ISA/TMG and other filters,
or to get it beforehand, whether it's going to be request or response data, and
what priority the IsaScript filter is set at, relative to other filters.

Pattern: A tutorial of how to use regular expressions is beyond the scope of this
document. However there are a few points important to filter efficiency:

Use non-greedy (or 'lazy') quantifiers whenever possible, to match the
narrowest possible amount of text. Using the quantifier ".*" is dangerous
because it can match all bytes.

Craft your expressions to include well-known leading and trailing bytes, a
string always known to be beyond your desired match bytes. This will help
the filter efficiently plan how much of the stream to "hold" in memory
before deciding it does not match. You can do this implicitly as in the
example below where the beginning matches "<title>" and the end
matches "</title>", or explicitly using a positive lookahead and lookbehind.

If you want case insensitive matching, the first characters of your
expression should be "(?7i)"

There is currently no facility to pass "sub matches" to your callback
function. However, lua string matching functionality is usually sufficient to
parse the matching bytes and acquire any sub-parts you need.

When using the quote(") character in your expression, you need to escape
it with a backslash so the lua script can pass it correctly.

http://www.regular-expressions.info/lookaround.html
http://www.regular-expressions.info/repeat.html#greedy
http://www.regular-expressions.info/

e When passing regex escape entities such as \s or \w, you must
(additionally) escape the backslash character so lua does not interpret it.
So \s for example becomes \\s.

e When you want to actually match a literal backslash (\) character, you
must double escape it, to (\\\). Yes, that's 4 in a row. This seems
excessive, but it is necessary because lua will parse it down to (\\) and
then that sequence is what the regular expression processor will interpret
as "match a literal backslash".

Can modify: This is an advisory value only, and does not prevent you from
modifying the data if set to false. However, incorrectly specifying the value as
false and then changing the length of the HTTP body will lead to HTTP errors,
since the HTTP header may specify the wrong body length.

When can modify is set to true, IsaScript will force HTTP messages with bodies
to use chunked encoding. This is necessary because during the header
processing, there's no way to know in advance what the ultimate content length
of the message will be. For most purposes, you can ignore this detail. However
it should be noted that technologies such as download/upload progress bars
often depend on a knowledge of the content size in order to display meaningful
data. Using chunked encoding can interfere with these heuristic indicators.

If your matcher needs to be:
e SIDE_CLIENT with MODE_REQUEST, or
e SIDE_SERVER with MODE_RESPONSE,

then it will operate before ISA/TMG has a chance to parse the HTTP headers
(see OnPreprocHeaders and OnReceiveResponseHeaders). If you need to deal
with header information in this configuration, you'll have to make content
matching callbacks for the PART_HEADER and do the parsing yourself.

Text matching callback function

Summary

This is a user-named and user-defined function that will be called when a match
occurs in an expression set by a SetupTextMatch call. The name of the function
must be the same as what you specified in the Callback argument to
SetupTextMatch .

Arguments

matchText: A string containing the matching portion of the HTTP stream. If you
modify this string, the change will be merged into the stream.

DisableTextMatch

Summary
This is an advanced function. If you are in a PART_HEADER callback and

discover that you don't need to do any PART_BODY processing for this message
even though you set up one or more matchers for it, you can call the function
ISA.DisableTextMatch to cancel those matchers.

Body matching can be expensive because every byte of the body flows through
the web filter and your lua code. If you only need to process certain bodies, you
can use this function to increase performance. The FBA.lua code uses this
approach. If it does not detect the URL as "/CookieAuth.dIl" it disables body
matching so it will skip processing any request bodies other than FBA POSTs.

Do not use this to disable matching on the SIDE/MODE/PART you are currently
running. Doing this will very likely lead to the filter eating part of the data stream
and the session will stall. It is only sensible to disable a matching type that has
not yet been entered into.

Once called, all matchers for that SIDE/MODE/PART will be cancelled.

Arguments
e Side: Either SIDE_CLIENT or SIDE_SERVER.
e Mode: Either MODE_REQUEST or MODE_RESPONSE.
e Part: Either PART_HEADER or PART_BODY.

Content matching Example

-- A toy example that records the title tag of each page with the
-- content type of text/html, into the ISA/TMG log's "Filter
Information”

-- field, and preserves other filters' data in that field too.
function SetupContentMatching(args)

args.SetupTextMatch (
SIDE SERVER,
MODE RESPONSE,

PART BODY,
"(?i)<title>.*?</title>",
"MyTitleCallback",
false
)
end
myTitle = ""
myContentType = ""

-- make sure vars
-- start empty on each request
function Initialize()
myTitle = ""
myContentType = ""
end

function MyTitleCallback (args)
myTitle = args.matchText

end

function OnReceiveResponseHeaders (args)

myContentType = args.GetHeader ("Content-Type:")
return SF STATUS REQ NEXT NOTIFICATION
end

function OnLog (args)
-- don't quibble about case, force to lower for testing
if string.find(string.lower (myContentType), "text/html") then
-- eat the end tags: first 7 chars and last 8
args.pszParameters =
string.sub(myTitle, 8, -9)

wm. mn
’

args.pszParameters

end

return SF STATUS REQ NEXT NOTIFICATION
end

Even more features

If you see something missing, or you're not sure whether IsaScript can solve a particular
filtering task, please let us know.
IsaScript was developed initially for our internal prototyping use, but based on a high

demand for affordable custom filters, we have made it into a retail product. We will
continue to add features as we need them internally, and as customers request them.

Filter licensing

To view your evaluation period or enter a key, go to Add-ins, Web Filters, and select
IsaScript properties:

Application Filters YWE'J Filters '\

Order = |Name |Des:
‘g1 DiffServ Fiter Enabl

U w'eb Publishing Load Balanc. .. Enabl

33 Conpressian Filker Enahil

34 Authentication Delegation F... Enabl

Properties

1JE FlexFor — | FlexF
Move Down e

el Mmoo 1 r— LI

and select the License tab:

IsaScript Properties ed |

Generall Seftings License |

Inztalled on: B/25/2008 2:17:26 P

Expires on: 72542008 21726 PM - Demo License

Y'ou zan purchase licenses at waw, collectivesofbware. comdStore

To get a key for thiz array, vizsik: qoae collechvezofbware, com/| icenss

Array M ame; IIS.-’-‘-.:ZEIEIES E_ Wi

Licenze Key: I

k. I Cancel Spply

The License tab is used to check how long remains in the evaluation period, and to
activate a permanent license.

To be eligible for a license key, you need to purchase license(s). You can do this on
our web store or by contacting us.

http://www.collectivesoftware.com/Contact
https://www.collectivesoftware.com/Store

Once you have available license(s) you can request a key for your array (or single
server) at our licensing page. When requesting a license key, you will need to tell us
the name of the ISA/TMG array, which is indicated on this dialog. The exact name is
important, because it will be used to validate the key. Please note that for TMG
systems, the characters “-TMG” will be appended to this name. Please tell us the name
exactly as shown in your dialog.

The license key is sensitive to the number of servers in the array. For example if you
begin with only 2 servers in the array but plan to have 4, you can purchase 4 licenses
and request a license key for a 4-server array. Then as you bring future servers online,
they will be licensed automatically.

Warning: if you install more servers than you have licensed then the license key will be
seen as invalid, and the servers will begin to operate in demo/lab mode. So if you need
to add more servers to a live array then you should acquire and apply your new license
key in advance, so this behavior does not take place.

Demo/Lab mode

When the evaluation period expires (after 30 days) or when an invalid license key is
used, the filter runs in demo/lab mode. In this mode the filter will work normally for a
period of 2 hours from the starting of the Firewall Service, and then stop working after
that time. This mode is meant to be useful for test labs where you don't wish to
purchase licenses but still want to be able to run meaningful test setups. After 2 hours,
you can restart the firewall service and the lab timer will reset again.

Troubleshooting

The first place to look if something seems to be working incorrectly is the ISA/TMG
alerts tab in the Monitoring section. Often this will directly indicate the cause of the
problem. This information will also be required in almost all cases if you need support.

Support for IsaScript

Collective is proud to offer support for IsaScript, whether you need help getting a script
working, find a bug, or just have a feature question.

Support is available from our web site at http://www.collectivesoftware.com/Support/

e Knowledge Base: When our staff answers questions that will apply to the whole
community, they will often create a permanent KB item to disseminate this
knowledge. There is a Search feature here; you can also easily browse by topic.
To get fast answers to FAQs (frequently asked questions) the knowledge base is
the best place to start.

e Support ticket: We are always happy to help you get set up and working. If you
have questions or need assistance understanding/configuring/testing a Collective
product, you can get in touch with our support staff quickly and easily. For the
most up-to-date information, please see our Support page.

http://www.collectivesoftware.com/Support/
http://www.collectivesoftware.com/License

Appendix A: Other Examples

Strip domain part out of forwarded Basic Authorization

For this example to work, the IsaScript filter must have a higher priority than the
Authentication Delegation Filter.

It also simplistically assumes, for UPN cases, that the username you want to forward is
the part of the string left of the '@' symbol.

Global script

-- Control variables

-- Leave these declarations as-is here,

-- but copy the variable into per-rule scripts with the value /true/
-- 1if you want to perform that action in that rule

trimBasic = false

-- reset variables at the start of each request
function Initialize()

trimBasic = false
end

function SetupContentMatching (args)
args.SetupTextMatch (

SIDE SERVER,
MODE REQUEST,
PART HEADER,
"\r\nAuthorization:\\s*Basic\\s+[*\r]+",
"TrimBasicAuth",
false)

end

function TrimBasicAuth (args)
if trimBasic then
-- thanks to Isaac Olson for bug fix on next line:
auth = string.match(args.matchText, "Basic%s+(["\r]l+)")
dAuth = Util.Base64Decode (auth)
name, pass = string.match (dAuth, " ([*:]+):(.*)")
-— 1s name in domain\user format?
if string.find(name, "[\\]") then
name = string.match (name, "["\\]J+[\\](.*)")
end
if string.find(name, "Q") then
name = string.match (name, " (["@]+)")
end
newDAuth = name .. ":" .. pass
newAuth = Util.Base64Encode (newDAuth)
replaceText = "\r\nAuthorization: Basic " .. newAuth
args.matchText = replaceText
end
end

Per-rule script

trimBasic = true

Read data posted to the FBA logon form

For this example to work, IsaScript must have a higher filter priority than the "Forms-
based authentication" web filter.

It makes use of the script "FBA.lua" included with the filter distribution. This script uses
content matching functions and other event callbacks discussed above, to determine
whether a request is an FBA post. If so, it forwards the name/value pairs in the form to
a function you define.

This is useful to sniff the password entered into the form, or if you have edited the
default FBA form to include other information you want to be passed into the script.

It is important to put this script into the Listener scope so you aren't content matching all
traffic going through the proxy (i.e. forward proxy traffic)

Per-listener script

require "FBA"

username = ""
pass = ""
city = ""
function Initialize()
-- call the initialization in the FBA script
FBAInitialize ()
-- then do any other init needed here
username = ""
pass = nn
Clty — nn
end
function SetupContentMatching (args)
-- set up FBA content matching
FBASetupContentMatching (args)
end
-- this function gets called by the FBA logic
function OnFormAuthentication (nvpairs)
-- form data is passed as a table of name/value pairs

if (nvpairs["username"]) then
username = nvpairs["username"]
end
if (nvpairs["password"]) then
pass = nvpairs|["password"]
end

-- here, city is an <input> element we added to the form
if (nvpairs["city"]) then
city = nvpairs["city"]
end
return true —-- if you return false it will force the auth to fail.

end
-- note that FBA posts skip many normal events, and the browser
-- closes the session right away. So if you want to use these
-- variables do it right away or store them as globals.
-—- FBA.lua sets the global var "cookievalue" which can be used as a
-- unique key to set/get globals for this session. The example
-- listener.lua makes extensive use of this.

	IsaScript Documentation
	ISA/TMG Web Filtering API
	Solution
	Features
	Requirements
	Help is Available!

	Installation of IsaScript
	Install Procedure
	Troubleshooting
	Install rolls back (with red error message at the end)
	Frozen or hung install

	A simple test to prove IsaScript is working
	Main script setup
	Access rule setup
	Testing the Hello World script

	Web filtering concepts
	Some Good Starting points in the SDK
	Avoid confusion on these pages

	Global, Listener, and Per-rule scripts
	Global script area (in the main filter settings tab)
	Listener script areas
	Per-rule script areas

	Filter priority class
	Script Reference
	Lua Language
	Require (include) path for scripts or libraries
	Initialize Function
	Example

	Event Functions
	OnAccessDenied
	SDK Summary
	Arguments
	Notes
	Example

	OnAuthComplete
	SDK Summary
	Arguments
	Notes
	Example

	OnAuthentication
	SDK Summary
	Arguments
	Notes

	OnEndOfNetSession
	SDK Summary
	Arguments
	Notes

	OnEndOfRequest
	SDK Summary
	Arguments
	Notes

	OnLog
	SDK Summary
	Arguments
	Notes
	Example

	OnPolicyCheckCompleted
	SDK Summary
	Arguments
	Notes
	Example

	OnPreprocHeaders
	SDK Summary
	Arguments
	Notes
	Example

	OnReceiveResponseHeaders
	SDK Summary
	Arguments
	Notes

	OnRouting
	SDK Summary
	Arguments
	Notes

	OnSendResponse
	SDK Summary
	Arguments
	Notes

	Callback Functions
	AddHeader
	SDK Summary
	Arguments

	GetHeader
	SDK Summary
	Arguments
	Notes

	SetADAuthenticatedUser
	SDK Summary
	Arguments
	Notes

	SetAuthenticatedUser
	SDK Summary
	Arguments
	Notes

	SetHeader
	SDK Summary
	Arguments
	Notes

	SetUserCachingKey
	SDK Summary
	Arguments

	Utility Functions
	ISA.DisableNotifications
	Summary
	Notes

	ISA.DisableTextMatch
	Summary

	ISA.DisableWPXNotifications
	Summary

	ISA.GetHeader
	Summary
	Arguments
	Notes
	Example

	ISA.GetServerVariable
	Summary
	Arguments
	Example

	Util.AddResponseBody
	Summary
	Arguments
	Notes
	Example

	Util.AddResponseHeaders
	Summary
	Arguments
	Notes
	Example

	Util.Base64Decode
	Summary
	Arguments
	Example

	Util.Base64Encode
	Summary
	Arguments
	Example

	Util.GetFBACookieName
	Summary
	Notes

	Util.GetGlobal
	Summary
	Arguments
	Notes

	Util.GetLDAPAttributeValues
	Summary
	Arguments
	Notes
	Example

	Util.LogEvent
	Summary
	Arguments

	Util.LogInformation
	Summary
	Arguments
	Notes

	Util.LogWarning
	Summary
	Arguments
	Notes

	Util.PrintClient
	Summary
	Arguments
	Notes

	Util.Redirect
	Summary
	Arguments
	Notes

	Util.SendResponse
	Summary
	Arguments
	Notes
	Example

	Util.ServeFile
	Summary
	Arguments
	Notes

	Util.SetGlobal
	Summary
	Arguments

	Util.SetLDAPAttributeValues
	Summary
	Arguments
	Notes
	Example

	Util.URLDecode
	Summary
	Arguments

	Util.URLEncode
	Summary
	Arguments

	Content Matching
	SetupContentMatching
	Summary
	Arguments

	SetupTextMatch
	Summary
	Arguments
	Notes

	Text matching callback function
	Summary
	Arguments

	DisableTextMatch
	Summary
	Arguments

	Content matching Example

	Even more features
	Filter licensing
	Demo/Lab mode
	Troubleshooting

	Support for IsaScript
	Appendix A: Other Examples
	Strip domain part out of forwarded Basic Authorization
	Global script
	Per-rule script

	Read data posted to the FBA logon form
	Per-listener script

